LSTM recurrent networks learn simple context-free and context-sensitive languages

نویسندگان

  • Felix A. Gers
  • Jürgen Schmidhuber
چکیده

Previous work on learning regular languages from exemplary training sequences showed that long short-term memory (LSTM) outperforms traditional recurrent neural networks (RNNs). We demonstrate LSTMs superior performance on context-free language benchmarks for RNNs, and show that it works even better than previous hardwired or highly specialized architectures. To the best of our knowledge, LSTM variants are also the first RNNs to learn a simple context-sensitive language, namely a(n)b(n)c(n).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Nonregular Languages: A Comparison of Simple Recurrent Networks and LSTM

In response to Rodriguez's recent article (2001), we compare the performance of simple recurrent nets and long short-term memory recurrent nets on context-free and context-sensitive languages.

متن کامل

Incremental training of first order recurrent neural networks to predict a context-sensitive language

In recent years it has been shown that first order recurrent neural networks trained by gradient-descent can learn not only regular but also simple context-free and context-sensitive languages. However, the success rate was generally low and severe instability issues were encountered. The present study examines the hypothesis that a combination of evolutionary hill climbing with incremental lea...

متن کامل

Learning Context Sensitive Languages with LSTM Trained with Kalman Filters

Unlike traditional recurrent neural networks, the Long ShortTerm Memory (LSTM) model generalizes well when presented with training sequences derived from regular and also simple nonregular languages. Our novel combination of LSTM and the decoupled extended Kalman filter, however, learns even faster and generalizes even better, requiring only the 10 shortest exemplars (n ≤ 10) of the context sen...

متن کامل

Context-free and context-sensitive dynamics in recurrent neural networks

Continuous-valued recurrent neural networks can learn mechanisms for processing context-free languages. The dynamics of such networks is usually based on damped oscillation around fixed points in state space and requires that the dynamical components are arranged in certain ways. It is shown that qualitatively similar dynamics with similar constraints hold for abc, a context-sensitive language....

متن کامل

On learning context-free and context-sensitive languages

The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2001